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Abstract

The point-defect clustering is an important component of the hardening of low copper content pressure vessel steels.

This study reports the first steps of a project devoted to the modelling of the nucleation and growth of point-defect

clusters in ferritic alloys under irradiation at large fluence. A cluster-dynamics modelling based on rate equations giving

the evolution of the population of interstitial loops up to some 0.1 lm and of vacancy clusters is developed. It is applied

to two alloys FeCu (0.13 wt%) and FeMn(1.5 wt%)Ni(0.8 wt%)Cu(0.13 wt%)P(0.01 wt%) the composition of which is

close to the one of pressure vessel steels and to non-alloyed Fe for comparison. The model was calibrated by carrying

out 1 MeV irradiations in a high voltage microscope on these three materials and by using the results of experiments

and atomic simulations reported in the literature. It is shown that the presence of copper in iron stabilises the interstitial

clusters and more important that the parameters relative to the interstitials in the complex alloys are totally different

from those for iron: the migration energy must be increased from 0.3 to 1 eV and the binding energy of di-interstitials

must be decrease from 0.9 to 0.2 eV. � 2002 Published by Elsevier Science B.V.

PACS: 61.82.Bg; 61.80.Fe; 60.00.Hg

1. Introduction

The radiation hardening of metallic alloys under ir-

radiation is known to be due to radiation-induced fea-

tures such as point-defect clusters or precipitates which

are generally large enough to be observed by transmis-

sion electron microscopy (TEM).

In the case of pressure vessel steels, the combination

of material and external parameters are such that the

microstructural features induced by irradiation resulting

in hardening and associated embrittlement are too small

to be observed by TEM [1]. Till now, in very low copper

content steels (½Cu�6 0:1%), no copper precipitates have

been experimentally observed except for diffuse three-

dimensional segregation. Their radius is around 2 nm

and they contain mainly manganese, nickel and silicon

atoms that are known to be soluble in iron and only few

copper atoms [2].

Concerning the point-defect clusters, very small

three-dimensional vacancy clusters (three to four va-

cancies) have been seen experimentally by positron an-

nihilation spectroscopy in irradiated steels at T 6 150 �C
but likely not at in service temperature [3]. Furthermore,

indirect evidences show that small point-defect clusters

are induced by irradiation and that they are not only

nucleated in the core of the cascades but also by the

random encounter of self-interstitial atoms (SIA): a

hardening of 30 Hv0:05 (Vickers test under a load of 50 g)

is obtained in an Fe(0.11 at.%)Cu alloy irradiated with

2.5 MeV electrons up to 1:4� 10�3 dpa at 290 �C [4] and

an hardening of 26 Hv0:5 in an Fe(0.08 at.%)Cu alloy

irradiated with 2.5 MeV electrons up to 8:7� 10�4 dpa
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at 300 �C [5], when no solute segregation is observed by

tomographic atom probe [2]. Irradiation with neutrons

in the Osiris experimental reactor up to 8� 10�2 dpa at

290 �C gave Hv0:05 ¼ 73 in the first model alloy [6] and

Hv0:5 ¼ 53 in the second [7]. So, taking into account the

fact that the fluence reached, expressed in dpa, is smaller

for the electron than for the neutron irradiations, we can

conclude that the mode of production of the elementary

damage (isolated point defects or displacement cascades)

has surprisingly not a strong effect on the hardening. As

shown recently, this behaviour is also observed in pres-

sure vessel steels at the operating temperature [8] as well

as at 60 �C [9].

To increase the lifetime of the nuclear plant, it is of

prime importance to be able to predict the embrittle-

ment. Empirical formulae built for the case of samples

irradiated under accelerated conditions are used for this

purpose. However, it seems important to validate these

extrapolations by taking into account the physical phe-

nomena underlying the degradation of the mechanical

properties under operating condition. In the case of low

copper pressure vessel steels, point-defect clusters are an

important cause of hardening. Then, modelling the nu-

cleation and growth of point-defect clusters is necessary.

The best way to do it would be to carry out atomic

simulation up to the end of life of the vessel. Despite the

important increase of the capability of computers it re-

mains nowadays out of reach especially if we consider

the size of a representative volume. Then, using cluster-

dynamics modelling based on rate equations is still the

only option. Indeed, they are based on important sim-

plifications and need the knowledge of sets of parame-

ters characteristic of the material. These parameters can

be obtained by atomic simulations or experimentally. It

is worth noticing that too often, pure iron parameters

are used. We will show that they are not appropriate for

alloys with a composition close to that of the pressure

vessel steels.

The purpose of this paper is to present the beginning

of a project which consists in developing and using a

cluster-dynamics modelling in parallel with experimental

studies on ferritic alloys. It consists of:

1. Modelling SIA and vacancy clustering using a clus-

ter-dynamics modelling (mean field model or rate

equations modelling).

2. Studying the nucleation and growth of interstitial

loops in model alloys under 1 MeV irradiation in a

high voltage electron microscope (HVEM) i.e. under

irradiation condition where the point-defect clusters

are observable by TEM.

3. Finding a set of parameters of the model giving an

acceptable fit of the experimental results obtained in

step 2.

4. Calculating the distribution of clusters under the low

dose rate electron irradiation condition, correspond-

ing to the one obtained using a Van de Graaff accel-

erator, and testing if the clusters are actually two

small to be visible (or eventually have a too low num-

ber density) and if the deduced hardening is in agree-

ment with the measured one [4].

5. Repeating steps 2–4 but under irradiation conditions

where displacement cascades are produced (ion irra-

diations).

We will here consider only the steps 1–3 and that only

SIA and vacancies are mobile. The effect of the mobility

of the clusters, will be discussed in a companion paper.

We guess that starting this study with electron irra-

diations, i.e. under conditions where the primary dam-

age is simple (isolated point defects) is of primary

importance to test the model: any modelling of the

evolution of steels or any other material under neutron

irradiation should at least be able to reproduce this

simple situation.

2. The model

Cluster-dynamics modelling were used very soon to

describe the point-defect clustering. They are all based

on the most general equation [10]

dCj

dt
¼ Gj þ

X
k

wðk; jÞCk �
X
k

wðj; kÞCj � Lj; ð1Þ

where Cj is the concentration of clusters of type j, wðk; jÞ
the transition rate per unit concentration of a cluster of

type k to a cluster of type j, Gj the production rate of

cluster of type j by collision of the irradiating particles

with the material and Lj the loss rate of cluster of type j
on all points defect sinks but point-defect clusters.

2.1. Basic equations

Assuming that only SIA and vacancies are mobile,

(1) may be rewritten as follows:

dCni
dt ¼ bi

ðn�1ÞiC1i

� �
Cðn�1Þi þ bv

ðnþ1ÞiC1v þ aiðnþ1Þi
� �

Cðnþ1Þi

� aini þ bv
niC1v þ bi

niC1i

� �
Cni;

dCnv
dt ¼ bv

ðn�1ÞvC1vCðn�1Þv þ bi
ðnþ1ÞvC1i þ avðnþ1Þv

� �
Cðnþ1Þv

� bv
nvC1v þ bi

nvC1i þ avnv
� �

Cnv:

9>>>>>=
>>>>>;
ð2Þ

Here Cnh is the concentration (number per unit volume)

of clusters containing n point defect (size n) of type h
(h ¼ i for interstitial and v for vacancy). bh0

nhC1h0 is the

rate of capture of a point defect of type h0 by a cluster of

type h and size n. ah0

nh is the rate of emission of a point

defect of type h0 by a cluster of type h and size n. In (2)

we have considered that a cluster of type h can only emit
a point defect of the same type.
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In the case of one and two interstitials and one and

two vacancies the equations are different

dC1i

dt ¼ G1i � RivC1iC1v � K1iC1i � 4bi
1iC1iC1i þ 4ai2iC2i

þbv
2iC1vC2i � C1i

P
n¼2

bi
niCni þ

P
n¼3

ainiCni

�C1i

P
n¼2

bi
nvCnv;

dC2i

dt ¼ 2bi
1iC

2
1i � 2ai2iC2i � bi

2iC1iC2i þ ai3iC3i � bv
2iC1vC2i

þbv
3iC1vC3i;

dC1v

dt ¼ G1v � RivC1iC1v � K1v C1v � Ce
v

� �
� 4bv

1vC1vC1v

þ4av2vC2v þ bi
2vC1iC2v � C1v

P
n¼2

bv
nvCnv

þ
P
n¼3

avnvCnv � C1v

P
n¼2

bv
niCni;

dC2v

dt ¼ 2bv
1vC

2
1v � 2av2vC2v � bv

2vC1vC2v þ av3vC3v

�bi
2vC1iC2v þ bi

3vC1iC3v;

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;
ð3Þ

where Riv is the recombination rate and K1i (respectively

K1v the elimination rate of interstitials (respectively va-

cancies) on fixed sinks as surfaces and dislocations.

The evolution of the cluster size is then obtained

through the numerical resolution of a system of Ni þ Nv

differential equations, where Ni and Nv are respectively

the maximum size of interstitial and vacancy clusters.

With the current capability of computers and with the

constraint of a maximum computation time of some

minutes, Ni þ Nv cannot be larger than a few hundred. In

order to extend this limit which remains too low, the

discrete equation is transformed into a continuous

Fokker–Plank type equation which describes the evo-

lution of the density of concentration Cðx; tÞ where x is

the number of interstitials (respectively vacancies) in the

cluster. They have the same form for interstitial and for

vacancy cluster. We have [10]

dCiðx; tÞ
dt

¼ � o

ox
fiðxÞCiðx; tÞ½ � þ o2

ox2
diðxÞCiðx; tÞ½ � ð4aÞ

with for h ¼ v

dvðxÞ ¼ 1
2

bv
xvC1v þ bi

xvC1i þ avxv
� �

;

fvðxÞ ¼ bv
xvC1v � bi

xvC1i � avxv
ð4bÞ

and for h ¼ i

diðxÞ ¼ 1
2

bi
xiC1i þ bv

xiC1v þ aixi þ avxi
� �

;

fiðxÞ ¼ bi
xiC1i � bv

xiC1v � aixi þ avxi:
ð4cÞ

It is worth noticing that a term avxi describing the emis-

sion of vacancies from interstitial clusters has been ad-

ded because for large clusters this term is no more

negligible at high temperature. The term aixi has been left
even if it is usually negligible for large interstitial clus-

ters. In fact, with the material and external parameters

effectively used, only avxv and aixi for very small interstitial
clusters are important.

These equations are then discretised in the x space in

such way that the increment of Dx between two succes-

sive points in the x space increases when x increases. To

minimise stability problems, a new variable, inspired by

the transformation proposed by Gonhiem and Sharafat

[11] is introduced. To avoid any continuity problem be-

tween the discrete and continuous equations, the first Dx
is set equal to one. This new variable u satisfies the relation

ukh ¼ ln ðCxh½ � 1Þðxkh � NhÞ þ 1�; h ¼ i; v; ð5Þ

where Cxh is a constant greater than unity which drives

the increase of Dx with x.

The set of ordinary differential equations is solved

numerically using the lsoda package based on a predic-

tor corrector method [12].

2.2. Rate coefficients

The whole physic of this model is contained in pro-

duction rates and in the rates of capture and emission of

point defects by clusters, dislocations, surfaces and grain

boundaries.

In order to simplify we will assume that for all but for

very small clusters, interstitial and vacancy clusters are

two-dimensional clusters (dislocation loops) and we will

take into account the multiple sink corrections only for

surfaces (thin foil case) or grain boundaries (bulk case).

2.2.1. Production rates of point defects

It is very simple to calculate them in the case of

electron irradiations compared to the case when primary

damage is created in displacements. Indeed more than

99% of the point defects are created in an isolated way.

The production rate can be calculated with a good ac-

curacy [13].

2.2.2. Recombination rate of point defects

This is given by

Riv ¼ 4privðDi þ DvÞ; ð6Þ
where Dh ¼ Dh0 expð�Em

h =kT Þ is the diffusion coefficient

of the point defect of type h ¼ i, v with Dh0 the frequency

factor, Em
h the migration energy and riv the recombina-

tion radius that we will take equal to 2.5a where a is the

lattice parameter.

2.2.3. Rate coefficient for dislocations

The more sophisticated models consider explicitly the

drift interaction between the point defect and the dis-

location but are difficult to include simply in a rate

equation model. This interaction is frequently included

by assigning a capture radius which depends on the

nature of the point defect. We have per unit length of

dislocation

Kd
hC1h ¼ qZd

hDhCh; ð7Þ
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where q is the dislocation density and Zd
h the capture

efficiency which in theory depends on the rate of capture

of the point defect by all the sinks either of same type or

not present in the medium (multiple sinks effect). If we

ignore the multiple-sink correction due to other sinks

except dislocation, a multiple-sink term remains in the

zero order expression [10]

Zd
h ¼ 2p

lnð1=rdh
ffiffiffiffiffiffi
pq

p Þ : ð8Þ

As q is in the argument of the logarithm, we will con-

sider in practice that Zd
h is a constant independent of q

but not of the trapping radius of the dislocation rdh .
Usually Zd

v is taken equal to one and Zd
i ¼ ð1þ eÞZd

v with

e around 0.2.

2.2.4. Rate coefficients for clustering

These rate coefficients for clustering of dislocation

loops have been the topic of a great number of studies

which are often not in good or even in fair agreement

with each other. The simplest models do not consider

explicitly the drift interaction. The more sophisticated

ones take it into account [14,15]. In some cases, special

effects such as the polarizabilities of the point defects

[16], non-linear elasticity [17], or the saddle-point shape

anisotropy of point defects [18] are considered.

We will discuss them briefly in order to justify our

choice. To be easily included in the model, the rate co-

efficient must be given by an analytical expression. This

eliminates most of the approaches that take explicitly

into account the drift term. Furthermore, the expression

must be valid over the whole range of n. This implies, as

pointed out by Stoller [19], that the expression for bh0

nh is

subject to two important constraints. The first is that for

large values of loop radius it must be in agreement with

the one for dislocations and the second is that for n ¼ 1

it must be in agreement with the one given by the ato-

mistic, combinatorial method.

The simplest approach considers that the rate of

point defects capture of a dislocation loop of radius rn is
equal to the rate of point defects capture of a straight

dislocation whose length is the same as the perimeter of

the dislocation loops [20]:

bh0

nhCh0 ¼ 2prnZh0

nhDh0Ch0 ; ð9Þ

where

rn ¼
nVat
pb

� �1=2

ð10Þ

with Zh0
nh ¼ Zd

h0 hence independent of rn and h, Vat the
atomic volume and b the Burgers vector of the loop

assumed to be prismatic.

To compare easily the various expressions of the rate

coefficient for clusters, it is also interesting to introduce

the equivalent spherical capture radius of a loop rh0

nh

defined by

bh0

nhCh0 ¼ 4prh0

nhDh0Ch0 : ð11Þ

(9) and (11) fulfil the first constraint but not the second.

Indeed, with the iron lattice parameter and Zd
h ¼ 1

(h ¼ v), (9) and (11) give Zv
1h ¼ 1 (rv1h ¼ 0:12 nm) when

the combinatorial method gives Zv
1h ¼ 6:7 (rv1h ¼ 0:45

nm).

A better approach is to take into account the toro€ııdal
shape of a circular dislocation loop [21]. We have again

bh0

nhCh0 ¼ 2prnZh0

nhDh0Ch0 ð12Þ

but now Zh0
nh is not a constant anymore but depends on

the radius of the loop (geometrical effect)

Zh0

nh ¼
2p

lnð8rn=rpÞ
; ð13Þ

where rp is the pipe radius.
Assuming rp ¼ 2b and b ¼ 0:2 nm, we have now

Zv
1h ¼ 6:3 (rv1h ¼ 0:43 nm) in fair agreement with the

combinatorial method (for vacancies since drift inter-

action is neglected). However the first constraint is not

fulfilled since Zh0

nh tends towards zero when rn ! 1.

In order to satisfy both constraints we finally propose

the following expression:

Zh0

nh ¼ Zd
h0 þ

b
8pa

� �1=2

zh0

"
� Zd

h0

#
nch0 =2

,
; ð14Þ

where a is the lattice parameter.

By adjusting properly zh0 and ch0 , (14) fits well the

curve for vacancy capture given by (13) for not too large

n values (zv ¼ 35, cvh ¼ 0:7). Fig. 1(a) shows how these

curves fit. In the case of interstitials, we will assume that

Z i
nh=Z

v
nh is a constant equal to Zd

i =Z
d
v which gives zi ¼ 42,

ci ¼ 0:7. It is worth noting that (14) gives Zh0

ni ¼ Zh0

nv. Fig.

1(a) and (b) shows Zh0
nh versus rn for vacancies and in-

terstitials given by (9), (13) and (14) with Zd
v ¼ 1, Zd

i ¼
1:2. These figures also show the curves given by Coghlan

and Yoo [14] with the corresponding fit given by (14)

(zv ¼ 42, cv ¼ 0:8, zi ¼ 56, ci ¼ 0:65) in the range of

validity of the Coghlan theory (approximately 2 nm <
rn < 100 nm) and the curve given by [16]. Except for the

curve given by (9), it is clear that all the curves but the

ones given by the Wolfer model [16] are similar. In the

latter case, Z decreases considerably more rapidly with r,

than in the other cases. We finally used (14) in our work

zv ¼ 35, cv ¼ 0:7 for vacancies and zi ¼ 42, ci ¼ 0:7 for

interstitials.

It is worth noticing that an equation similar to (14)

was already used in a rate equation modelling [19] but

with ci ¼ cv ¼ 2 as in [16].

In good agreement with what is often admitted, (14)

gives bh0

nh

���
h6¼h0

¼ bh0

nh

���
h¼h0

. This leads to an inconstancy for
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low n if rh0

nh < riv since the capture radius of an interstitial
by a vacancy cluster (respectively the capture radius of

a vacancy by an interstitial cluster) cannot be smaller

than riv. Fig. 2 shows that this problem actually appears

for a reasonable value of riv ¼ 0:65 nm, especially if we

consider the case where Zh0
nh ¼ Zd

h0 . So we will take rh0
nh ¼

riv if rh0
nh < riv.

The rate of emission of a point defect by a cluster ah
nh

is obtained by considering that the detail balance applies

separately for vacancy and for interstitial. Then

ah
nh ¼ 2prn�1Zh

ðn�1ÞhDh expð�EB
nh=kT Þ ð15Þ

with EB
nh ¼ Ef

h � ðEf
nh � Ef

ðn�1ÞhÞ the binding energy of the
point defect h with the cluster nh where Ef

h and Ef
nh are

Fig. 1. Capture efficiency of dislocation loops versus their radius (a) for vacancies and (b) for interstitials. Curve 1, given by Wolfer

and Ashkin [16]; curve 2 given by (14) with Zd
v ¼ 1, zv ¼ 42, cv ¼ 0:8, for vacancies and Zd

i ¼ 1:2, zi ¼ 56, ci ¼ 0:65 for interstitials;

curve 3 given by (14) with zv ¼ 35, cv ¼ 0:7 for vacancies and zi ¼ 42, ci ¼ 0:7 for interstitials; curve 4 given by Coghlan and Yoo [14]

and curve 5 given by Seeger and Gôosele [20].

Fig. 2. Capture radius of dislocation loops versus their radius (a) for vacancies and (b) for interstitials. The definitions of the curve are

the same as in Fig. 1. Curve 6 corresponds to the very simple case where Zh0
nh ¼ Zd

h0 . In (a), there is almost no difference between curve 1

and 6.
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the formation energies of the point defect h and of the

cluster nh respectively.

It has been shown by molecular dynamic simulation

that in iron [22]

EB
nh ¼ Ef

h þ
EB
2h � Ef

h

2r � 1
nr½ � ðn� 1Þr� ð16Þ

with r ¼ 2=3.
The number of parameters needed to describe EB

nh is

then reduced to two for each type of point-defect cluster.

Fig. 3 shows that, for large n, (16) is in reasonably

good agreement with the expression given by the elastic

theory of dislocations neglecting an eventual contribu-

tion of a staking fault [23]

EB
elas ¼ Ef � lb4

4pð1� mÞr ln
32r
b

� �
: ð17Þ

Concerning avxi we will take

am
xi ¼ 2prx�1Zm

ðn�1ÞmDm expð�EB
xm i=kT Þ

with EB
xm i ¼ Ef

m þ
Ef
i
�EB

2i

22=3�1 x2=3 � ðx� 1Þ2=3
h i

.

2.2.5. Rate coefficients for surfaces and grains boundaries

The multiple sink effect is no more a simple correc-

tion and cannot be ignored. We used the expressions

given by Bullough et al. [24].

In fact the microstructure is very often such that a

simplest expression can be used. Let us define the sink

strength Sskh of a sink sk for the point defect of type

h ¼ i, v as usually by

Ksk
h Ch ¼ Sskh DhCh: ð18Þ

If Ssch is the sum of the sink strengths of all the sinks but

the grain boundary (or the surface) and k the size of the

grain d (or L the thickness of the thin foil), the micro-

structure quickly become such that ðSsch Þ
1=2k is very large.

Then Sskh is given by

Sskh ¼ ðSsch Þ
1=2H ð19Þ

with H ¼ 6=d for a grain boundary and H ¼ 1=L for a

thin foil.

3. HVEM irradiation experiments [25]

They were carried out in two low copper content

alloys, FeCu (0.13 wt%) and FeMn(1.5 wt%)Ni(0.8

wt%)Cu(0.13 wt%)P(0.01 wt%) hereafter called the

complex alloy and non-alloyed Fe for comparison. The

main impurities are 0.2 at.%Al, 0.04 at.%Si, 0.012 at.%S

and 0.02 at.%P. Furthermore, all these alloys contain 20

wppm carbon to take into account the important effect

of carbon in ferritic steels on the mobility of vacancies

[26]. The ingots were cold-rolled up to 0.2 mm. The

sheets were then annealed in vacuum for 24 h at 820 �C.
Irradiations were performed in the 1 MeV Trans-

mission Electron Microscope of CEA-Saclay. Discs of 3

mm were punched out of the foils and electrolitically jet-

polished in a 5% HClO3 and 95% C2H5OH solution at

30 V and �70 �C. The irradiations were carried out

using a double-tilt heating specimen holder. In order to

prevent any oxidation, the vacuum in the vicinity of the

specimen is kept below 5� 10�8 Torr. The purpose of

these experiments was to measure the evolution with

temperature of the saturation density of dislocation

loops and if possible, the growth rate of the dislocation

loops. The nature of the loops was not analysed but

within the experimental conditions they are known to be

of interstitial type.

3.1. The number density

The saturation number density of interstitial dislo-

cation loops Dsat is the principal quantity considered in

the modelling. The measurements of Dsat were carried

out in the following way: after inserting the sample

holder in the microscope a suitable grain is quickly se-

lected using a very low electron current density so that

no loops nucleate. The sample is then shifted so that the

electron beam passes entirely through the hole in the

sample, the specimen cradle heated to the lowest tem-

perature and the electron current density adjusted to

4� 1018 e cm�2 s�1 which corresponds to a displacement

rate of 1:5� 10�4 dpa/s. The selected zone is shifted

back again under the beam to start the irradiation. The

irradiation is performed until we judge that the density

of loops has become constant. In practice, the irradia-

tion time was around 15–20 min. The sample is then
Fig. 3. Binding energy of a vacancy with a vacancy loop versus

the size of the loop calculated by using (16) and (17).
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shifted towards a virgin area and heated again to reach

the next temperature. The procedure is repeated up to

the highest temperature. The irradiation is performed

preferably in the same grain if it is large enough. By the

end of the experiment carried out at the highest tem-

perature a micrograph of the lowest temperature area is

taken to check that its microstructure has not changed

during the irradiation of the other areas at highest

temperature.

After irradiation, classical TEM observations were

carried out to determine the number density of dislo-

cation loops. The images were taken under two-beam-

kinematical-bright-field conditions with a diffraction

vector of type g ¼ f110g. Images obtained after irra-

diation at low and high temperatures for the three ma-

terials are given in Fig. 4. By using the thickness fringes,

a map of the thickness of irradiated areas is obtained.

For this purpose a two-beam-bright-field image under

dynamical condition was also taken. The number den-

sity of loops per surface unit in each region of equal

thickness corresponding to the fringes was measured.

The loop density N st
li is given by the relation

N st
li ¼ Nsurf=ðe� 2fdÞ; ð20Þ

Fig. 4. Images of interstitial dislocation loops taken under two beams kinematical bright field conditions with a diffraction vector of

the type g ¼ f110g. A1: Iron, 217 �C, 12 mn. A2: Iron, 364 �C, 27 mn. B1: FeCu, 170 �C, 15 mn. B2: FeCu, 351 �C, 45 mn. D1:

Complex alloy, 306 �C, 14 mn. D2: Complex alloy, 392 �C, 14 mn.
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where Nsurf is number of loops per surface unit, fd is

thickness of the depleted zone and e is local thickness of

the thin foil. By plotting Nsurf as a function of e, we

obtain the value of N st
li and fd for the temperature at

which the irradiations were performed.

Fig. 5 shows a plot of lnN st
li versus 1=T where T is the

irradiation temperature, for the three materials. The

plotted points are related to two grains in two different

samples for the complex FeMnNiCuP alloy, to one grain

in the FeCu alloy and to three grains in two different

samples for Fe.

The FeCu alloy shows an Arrhenian behaviour over

the whole range of temperature.

Non-alloyed Fe gives a small slope at low tempera-

ture and a large slope at the highest temperature. Several

extra experiments, not plotted in this graph, were carried

out on thickest thin foils to check if the slop transitions

near 300 �C is not simply a thickness effect. The answer

is no since in every case the same behaviour is observed.

Concerning the complex alloy, if we omit the highest

temperature point, N st
li follows an Arrhenius law with an

energy as high as 6 eV.

It is worth noting that because of the small size of the

loops, the N st
li values obtained at the lowest temperature

for Fe and FeCu are lowerbounds.

Simple models are often used to derive the interstitial

mobility from the change of N st
li with T [27–29]. They are

based on drastic approximations: the di-interstitial is the

loop nucleus, vacancies are motionless. . . With our no-

tations N st
li is then given by

N st
li ¼ G

ð12priv þ 4pr1Z i
2iÞDi0

� �1=2

exp

�
� Em

i

2kT

�
: ð21Þ

Eq. (21) applied to our experimental results gives

Em
i ¼ 0:3 eV for FeCu and 3 eV for the complex alloy. If

the former value is in good agreement with the experi-

mental results for Fe given in the literature by using

various methods [30], the latter is too high to have any

physical meaning. It must be concluded that (21) can not

be applied to the complex alloy. Concerning Fe, it is

difficult to use (21). However if we remember that N st
li for

the point at the lowest temperature is lowerbound and

that experimental errors are larger than for highest

temperatures we can write 0:1 < Em
i < 0:3 eV.

If (29) is applied to FeCu with Z i
2i given by (13), a

rough estimation of the frequency factor of the diffusion

coefficient of interstitials is Di0 ¼ 5� 10�5 cm2/s. The

size distribution is also interesting to consider as a val-

idation of the modelling even if the determination is not

precise because of the small size of the loops. Indeed, to

obtain a large range of N st
li , the size must be necessary

small if we want to avoid any interaction between dis-

location loops. Some size distributions of interstitial

loops are given on Fig. 6. It is worth noting that it was

not possible to obtain such a histogram for all the ex-

periments especially in the case when the loops are to

small. Then, only estimations of the mean size were

carried out. These values are certainly lowerbounds if we

consider the faint contrast given by electron microscopy

for very small loops.

3.2. Growth rate

The experimental procedure is almost the same but

the electron flux is six times larger and the tempera-

ture range higher (from 300 to 600 �C). At the highest
temperatures, when the nucleation rate is to small to

observe any loops in the irradiated area, the loops are

nucleated at lower temperature. To minimise the effect

of the surfaces, the experiments are carried out in zones

as thick as possible regarding the quality of the image

which are recorded on tapes using a video device. The

diameters or the largest dimension of the loops when

they are not circular is subsequently measured as a

function of time. A linear behaviour is always observed.

So, a growth rate can easily be obtained. Fig. 7 shows an

Arrhenius plot of the growth rate of loops in iron ob-

tained on a single thin foil. The solid line corresponds to

points (black squares) obtained by increasing the tem-

perature on a fresh sample from room temperature up to

600 �C and the dash line to points (empty circles) ob-

tained by decreasing the temperature on the same sam-

ple. Subsequent increase or decrease carried out on the

same sample gave points that remain on dash line. If the

point-defect concentration is controlled by recombina-

tion and the sink strength of surfaces significantly higher

than the sink strength of the loops (low number density

of loops), the stationary growth velocity is given by

dRl

dt
¼ 2

b
Z l
i

�
� Z l

v

� GVatDv0

4priv

� �1=2

exp

�
� Em

v

2kT

�
; ð22ÞFig. 5. Logarithm of Dsat, the saturation number density of

interstitial dislocation loops, versus 1=T , for the three materials.
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where Z l
h is the capture efficiency of loops. As the size of

the loops experimentally measured is larger than 10 nm

it is reasonable to assume in (22) that Z l
h � Zd

h .

The Em
v and a rough estimation of Dv0 effective values

can be derived from (22). We have Em
v ¼ 1:36 eV,

Dv0 ¼ 5 cm2/s by the first rise of the temperature and

then Em
v ¼ 0:73 eV, Dv0 ¼ 5 cm2/s. These Em

v values are

very close to those given by others [26] for respectively

standard and ultra-pure iron. It is often assumed that

the high value comes from the deep trapping of vacan-

cies by interstitial carbon resulting in the formation of

immobile complexes. Actually the best interpretation of

our results is to assume that carbon or some other im-

purity trapping the vacancies had left the thin foil during

the first heating at 600 �C.
The same behaviour is observed in FeCu.

4. Research of a good set of parameters and discussion

Our purpose is to find the best set of parameters able

to reproduce the stationary number density of intersti-

tial loops N st
li . We will also consider the size of these

loops measured or estimated by the end of the experi-

ments carried out to measure N st
li .

Many parameters concerning pure iron have been

studied experimentally or by atomic simulation. So the

range within which they can vary is limited.

We will first discuss the parameters for pure iron;

present the results given by the model with a reference

set of parameters and show how they must be changed

to improve the fit. We will then consider FeCu and

complex alloys.

4.1. Pure a iron

Due to the phase transition and the magnetism, re-

liable experimental values for vacancy formation and

Fig. 6. Size distributions of interstitial loops obtained by the end of experiments carried out at 1:5� 10�4 dpa/s. After 17 mn at 191 �C
and 25 mn at 364 �C in iron, 18 mn at 351 �C in FeCu and 15 mn at 380 �C in the complex alloy.

Fig. 7. Arrhenius plot of the growth rate of interstitial dislo-

cation loops in iron obtained on a single thin foil. The dash line

corresponds to points (black squares) obtained by increasing

the temperature up to 600 �C and the solid line to points (empty

circle) obtained by decreasing the temperature on the same

sample.
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migration are difficult to obtain. That is why a contro-

versy still remains about Em
v (a group of values is around

1.3 eV and an other around 0.6 eV [26,30]). The vacancy

formation energy Ef
v is given between 1.6 and 2.0 eV [30].

Atomistic simulations on the other hand give a large

range of values for Em
v from 0.11 to 1.45 eV depending

on the inter-atomic potential and 1:4 < Ef
v < 2:1 eV.

Concerning interstitials, experimental measurements

give 0:25 < Em
i < 0:3 eV [30] and atomistic calculations

lower values between 0.15 and 0.30 eV [22,31,32]. No

experimental Ef
i values exist while simulations give

3 < Ef
i < 7 eV [22,30–34].

The parameters EB
2v and EB

2i entering in (16) are given

only by atomistic simulations. Fits of molecular dy-

namic simulation carried out by Soneda and Diaz de la

Rubia [22] give EB
2v ¼ 0:23 eV and EB

2i ¼ 0:71 eV.

Considering the values given by the literature and our

experimental data, a reference set of parameters was fi-

nally chosen. It is given in Table 1. The migration en-

ergies of point defects are those given by the simplified

models applied to our HVEM experiments on fresh thin

iron foils. The frequency factors have been changed for

reasons that will be given below. The dose rate, the

temperature range and the foil thickness are those used

in our experiments carried out to measure the number

density of loops.

Fig. 8 gives a typical evolution of the distribution of

interstitial loops at low temperature (181 �C) with the

reference set of parameters. As expected, a well-defined

peak appears quickly for small values of t. It then shifts

towards the larger loop sizes while spreading out. At the

left side of the peak a stationary distribution appears

which decreases rapidly from n ¼ 1 and does not change

any more when the peak shifts towards large r values.

From the calculated loops distribution a number density

of loops Nli is obtained. To compare with experiments,

only loops above a radius of 0.65 nm ðn ¼ 20Þ corre-

sponding approximately to the experimental limit of

observation are considered. The evolution of Nli at 181

�C is given on Fig. 9. After 1 s, Nli reaches a plateau N st
li .

Fig. 9 also shows that D0i (4� 10�3 and 5� 10�5

cm2 s�1) has an important effect on N st
li . In fact it is, at

low temperature, the most sensitive parameter.

Table 1

Symbol Value

G 1:5� 10�4 dpa/s

T 175 < T < 400 �C
L 0.3 lm
Em
v 1.3 eV

Ef
v 1.6 eV

Dv0 1 cm2/s

Em
i 0.3 eV

Ef
i 4.3 eV

Di0 4� 10�4 cm2/s

riv 0.65 nm

q 1� 108 cm/cm3

Zd
v 1.0

Zd
i 1.2

zv1h 35

zi1h 42

cvh 0.7

cih 0.7

EB
2v 0.2 eV

EB
2i 0.8 eV

Ni 20

NiC 180

Nv 300

NvC 0

Cxi 1.05

Fig. 8. Typical evolution of the distribution of interstitial loops

at low temperature (181 �C) with the reference set of parame-

ters.

Fig. 9. Evolution of the number density of interstitial loops Nli

at 181 �C. The curves which correspond to D0v ¼ 1 and 5 cm2/s

are superimposed.
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Fig. 10 gives the distribution of interstitial loops at

high temperature (352 �C), after 1000 s, calculated by

using the reference set of parameters. On the same figure

is also given the distribution with the same set of pa-

rameters except D0v which is five times greater (the

rough value extracts from our experiments by using

value given by (21)). With the latter value, the shift to-

ward the right of the peak is, as expected greater and the

size of the loops too large. The reason of this behaviour

is simply that when the stationary state for point defect

is reached, the growth rate of the loops increases with

Dv, as shown by (21). Secondly, the peak does not

emerge totally any more from the stationary distribution

in disagreement with what is observed experimentally.

The comparison of lnN st
li (calculated with the refer-

ence set of parameters) versus 1=T with the experimental

value shows qualitatively a good behaviour (Fig. 11) but

the rapid decrease at high temperature is slightly too

important. Calculations with various value of EB
2i show

clearly that the high slope is due to the ability of clusters

to emit interstitials. This fact was already pointed out by

Bourret [28]. If we remember that the point at the lowest

temperature are lowerbounds with a large experimental

error, we can consider that the experimental N st
li curve is

correctly fitted with EB
2i ¼ 0:9 eV.

4.2. FeCu alloy

We will consider that the basic Eqs. (2) and (3) re-

main valid for the alloy which are now considered as

effective media or as ‘grey metals’. The parameters de-

scribing the mobility of point defects and the stability of

clusters must now be considered as effective parameters.

This can be justified for the point-defect mobility if the

temperature is not too low because in this case the local

equilibrium is satisfied (for example between free point

defects, free solute atoms and solute-defect pairs in the

case of a dilute alloy). This is nothing but the basic as-

sumption of mater transport theory in solids [35]. Con-

sidering the formation energy of clusters, it is simply an

assumption. We will consider that the relation (16) still

remains valid. The only effect of the solutes is then to

modify the value of EB
2h and possibly the one of Ef

h.

Obviously, a possible effect of segregation of solute

atoms on the point-defect clusters is not explicitly con-

sidered.

The experimental values of N st
li can be fitted with the

same parameters as for the non-alloyed Fe except the EB
2i

value, which must satisfy EB
2i P 1:2 eV (Fig. 11). The

presence of copper atoms stabilised the small interstitial

clusters. Indeed the N st
li values are slightly too small.

They could be easily pushed up by very slightly de-

creasing Di0.

4.3. The complex alloy

By considering Fig. 5, it is clear that the set of pa-

rameters for this alloy, the composition of which is close

to those of the ferrite of actual steels, is very different

from the set used to fit N st
li for Fe and the FeCu binary

alloy. To find a good set, we have considered that the

high slope observed experimentally has the same origin

as the high temperature slope observed for iron but with

parameters such as the N st
li values at low temperature,

where the slope is small, are too high to be measured

experimentally. Then, compared to the set of parameters

for Fe, EB
2i must then be smaller to get a rapid decrease

of the curve at high temperature and Di must be sig-

nificantly smaller too to obtain very high N st
li values at

low temperature. Fig. 12 shows that experimental points

Fig. 10. Distribution of interstitial loops at high temperature

(352 �C), after 1000 s, calculated by using the reference set of

parameters and effect of D0v.

Fig. 11. Comparison of lnN st
li calculated with the reference set

of parameters and various values of EB
2i versus 1=T with the

experimental results obtained in Fe and FeCu.
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can be fitted with Em
i ¼ 1:0 eV, D0i ¼ 4� 10�3, D0v ¼

10�2 and EB
2i ¼ 0:2 eV, the other parameters being those

used for Fe.

It is worth noting that a simple model [28] considers

the possibility of dissociation of di-interstitials and pre-

dicts an activation energy at high temperature equal to

ð5Em
i þ 4EB

2iÞ=6 which gives 0.8 eV in total disagreement

with what we obtained. The reason is probably that the

model used here considers not only the dissociation of

di-interstitials but also the one of larger clusters. The

mobility of vacancies could also play a role.

5. Conclusion

In this article we have reported the first step of a

project devoted to the modelling of the component of

hardening of pressure vessels due to point-defect cluster.

For this purpose a rate equation model has been de-

veloped and applied to a simple binary alloy FeCu

(0.13 wt%), a complex alloy FeMn(1.5 wt%)Ni(0.8 wt%)

Cu(0.13 wt%)P(0.01 wt%) the composition of which is

close to the one of the matrix of pressure vessel steels

and non-alloyed Fe for comparison. The calibration of

the model was obtained by carrying out 1 MeV electron

irradiations in these materials and by using the results

of experiments and atomic simulations reported in the

literature. The main results are:

(i) the presence of copper in iron do not affect the mo-

bility of interstitial but stabilises the interstitial clus-

ters since the binding energy of di-interstitials must

be increased from 0.9 eV for iron to a value equal or

larger than 1.2 eV.

(ii) the parameters relative to the interstitials in the com-

plex alloy are totally different from these for iron:

the apparent migration energy is now around 1 eV

and the binding energy of di-interstitials as low as

0.2 eV. This important result shows that parameters

obtained by numerical simulation on pure iron or

even on low copper binary alloys can not be used di-

rectly for modelling the hardening of actual pressure

vessel steels except if it is proofed that under neutron

irradiation free interstitials do not play any role.

(iii) the parameters relative to the vacancy are not sig-

nificantly affected by the alloying elements.
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